112 research outputs found

    Tidal pressurization of the ocean cavity near an Antarctic ice shelf grounding line

    Get PDF
    Mass loss from the Antarctic ice sheet is sensitive to conditions in ice shelf grounding zones, the transition between grounded and floating ice. To observe tidal dynamics in the grounding zone, we moored an ocean pressure sensor to Ross Ice Shelf, recording data for 54 days. In this region the ice shelf is brought out of hydrostatic equilibrium by the flexural rigidity of ice, yet we found that tidal pressure variations at a constant geopotential surface were similar within and outside of the grounding zone. This implies that the grounding zone ocean cavity was overpressurized at high tide and underpressurized at low tide by up to 10 kPa with respect to glaciostatic pressure at the ice shelf base. Phase lags between ocean pressure and vertical ice shelf motion were tens of minutes for diurnal and semidiurnal tides, an effect that has not been incorporated into ocean models of tidal currents below ice shelves. These tidal pressure variations may affect the production and export of meltwater in the subglacial environment and may increase basal crevasse heights in the grounding zone by several meters, according to linear elastic fracture mechanics. We find anomalously high tidal energy loss at the K1 constituent in the grounding zone and hypothesize that this could be explained by seawater injection into the subglacial environment at high tide or internal tide generation through interactions with topography. These observations lay the foundation for improved representation of the grounding zone and its tidal dynamics in ocean circulation models of sub–ice shelf cavities

    Ocean forced variability of Totten Glacier mass loss

    Get PDF
    This is the author accepted manuscript. The final version is available from the Geological Society of London via the DOI in this record.A large volume of the East Antarctic Ice Sheet drains through the Totten Glacier (TG) and is thought to be a potential source of substantial global sea level rise over the coming centuries. We show the surface velocity and heightof the floating part of TG, which buttresses the grounded component, have varied substantially over two decades (1989–2011), with variations in surface height strongly anti-correlated with simulated basal melt rates (r=0.70, p<0.05). Coupled glacier/ice-shelf simulations confirm ice flow and thickness respond to both basal melting of the ice shelf and grounding on bed obstacles. We conclude the observed variability of TG is primarily ocean-driven. Ocean warming in this region will lead to enhanced ice-sheet dynamism and loss of upstream grounded ice.This work was supported by, Australian Antarctic Division projects 3103, 4077, 4287 and 4346, National Computing Infrastructure grant m68, NSF grant ANT-0733025, NASA grant NNX09AR52G (Operation Ice Bridge), NERC grant NE/F016646/1, NERC fellowship NE/G012733/2, the Jackson School of Geoscience, the Jet Propulsion Laboratory and the G. Unger Vetlesen Foundation. This research was also supported by the Australian Government’s Cooperative Research Centres Programme through the Antarctic Climate & Ecosystems Cooperative Research Centre. The work is also supported under the Australian Research Councils Special Research Initiative for Antarctic Gateway Partnership SR140300001. Landsat 4 and 7 images courtesy of the U.S. Geological Survey. This is UTIG contribution 2486. Thanks to Benoit Legresy for useful discussions

    How Memory Conforms to Brain Development

    Get PDF
    Nature exhibits countless examples of adaptive networks, whose topology evolves constantly coupled with the activity due to its function. The brain is an illustrative example of a system in which a dynamic complex network develops by the generation and pruning of synaptic contacts between neurons while memories are acquired and consolidated. Here, we consider a recently proposed brain developing model to study how mechanisms responsible for the evolution of brain structure affect and are affected by memory storage processes. Following recent experimental observations, we assume that the basic rules for adding and removing synapses depend on local synaptic currents at the respective neurons in addition to global mechanisms depending on the mean connectivity. In this way a feedback loop between “form” and “function” spontaneously emerges that influences the ability of the system to optimally store and retrieve sensory information in patterns of brain activity or memories. In particular, we report here that, as a consequence of such a feedback-loop, oscillations in the activity of the system among the memorized patterns can occur, depending on parameters, reminding mind dynamical processes. Such oscillations have their origin in the destabilization of memory attractors due to the pruning dynamics, which induces a kind of structural disorder or noise in the system at a long-term scale. This constantly modifies the synaptic disorder induced by the interference among the many patterns of activity memorized in the system. Such new intriguing oscillatory behavior is to be associated only to long-term synaptic mechanisms during the network evolution dynamics, and it does not depend on short-term synaptic processes, as assumed in other studies, that are not present in our model.Financial support from the Spanish Ministry of Science and Technology, and the Agencia Española de Investigación (AEI) under grant FIS2017-84256-P (FEDER funds) and from the Obra Social La Caixa (ID 100010434, with code LCF/BQ/ES15/10360004). This study has been also partially financed by the Consejería de Conocimiento, Investigación y Universidad, Junta de Andalucía and European Regional Development Fund (ERDF), with reference SOMM17/6105/UGR

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore